読者です 読者をやめる 読者になる 読者になる

Python3でTensorFlowのMNISTチュートリアルを試す

Python3環境でTensorFlowのMNISTチュートリアルを試しました。 Qiitaに丁寧に解説された記事があがっていたので、そこに掲載されているサンプルコードをコピペ(Python3に合わせて一部修正)で動かしました。

qiita.com

どういった処理を行っているかについては、正直に言ってさっぱりなのですがまずは動作を確認できたという所で一歩進めたかと思います。

# -*- coding: utf-8 -*-

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import time

start_time = time.time()
print("開始時刻: " + str(start_time))

print("--- MNISTデータの読み込み開始 ---")
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
print("--- MNISTデータの読み込み完了 ---")

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x, W) + b)

y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)

print("--- 訓練開始 ---")
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
print("--- 訓練終了 ---")

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

print("精度")
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

end_time = time.time()
print("終了時刻: " + str(end_time))
print("かかった時間: " + str(end_time - start_time))

結果

$ python mnist_for_ml_beginners.py
開始時刻: 1479552572.434575
--- MNISTデータの読み込み開始 ---
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
--- MNISTデータの読み込み完了 ---
--- 訓練開始 ---
--- 訓練終了 ---
精度
0.9085
終了時刻: 1479552576.449984
かかった時間: 4.015408992767334

90%強の精度結果でした。

参考

videojsのサンプルコード

video.jsの動作確認用のサンプルコード。 S3から動画を読み込む際には、CORS設定の編集が必要。

<!DOCTYPE html>
<html>
<head>
    <link href="http://vjs.zencdn.net/5.11.9/video-js.css" rel="stylesheet">
    <script src="http://vjs.zencdn.net/5.11.9/video.js"></script>
    <script src="https://npmcdn.com/videojs-contrib-hls@^3.0.0/dist/videojs-contrib-hls.js"></script>
</head>
<body>
    <video id="example-video" width="960" height="400" class="video-js vjs-default-skin" controls>
      <source src="http://d2zihajmogu5jn.cloudfront.net/bipbop-advanced/bipbop_16x9_variant.m3u8" type="application/x-mpegURL">
    </video>
    <script>
      var player = videojs('example-video');
    </script>
</body>
</html>

参考

TwitterボタンをTurbolinksに対応

TwitterボタンをTurbolinksに対応した時のメモ。

TwitterボタンをTurbolinksに対応

twttr_events_bound = false

$ ->
  loadTwitterSDK ->
    bindTwitterEventHandlers() unless twttr_events_bound

bindTwitterEventHandlers = ->
  $(document).on 'turbolinks:load', renderTweetButtons
  twttr_events_bound = true

renderTweetButtons = ->
  $('.twitter-share-button').each ->
    button = $(this)
    button.attr('data-url', document.location.href) unless button.data('url')?
    button.attr('data-text', document.title) unless button.data('text')?
  twttr.widgets.load()

loadTwitterSDK = (callback) ->
  $.getScript("//platform.twitter.com/widgets.js", callback)

Turbolinks Compatibilityに掲載されているコードでは、Turbolinks5の環境では動かなかったので読み込み方法を修正。

変更前

$(document).on 'page:load', renderTweetButtons

変更後

$(document).on 'turbolinks:load', renderTweetButtons

参考

NginxをLet's EncryptでSSL対応

NginxをLet's EncryptでSSL対応した時のメモ。

python2.7をインストール

$ sudo yum install centos-release-SCL
$ sudo yum install python27 phthon27-python-tools
$ sudo yum install dialog
$ sudo su
# vi ~/.bashrc 

~/.bashrc

source /opt/rh/python27/enable
# source ~/.bashrc

証明書を発行

$ cd /usr/local
$ sudo git clone https://github.com/certbot/certbot
$ cd certbot/
$ ./certbot-auto --help
$ sudo su
# ./certbot-auto certonly --webroot -w /usr/share/nginx/html -d example.com -d www.example.com --email mail@example.com

備考

さくらの記事を参考に作業を進めて自分の環境では完了時点でQualys SSL ReportでBの評価だった。そのあとnginxにセキュリティ項目の設定を追加して現在はA+の評価。

参考記事

Googleのガイドラインから気になった部分をメモ

Googleガイドラインから気になった部分をメモ。

詳細な記事

参考記事:「詳細な記事」機能に表示される記事 - Search Console ヘルプ

schema.org の Article マークアップ

Google では通常、ユーザーにとってより有用な検索結果が表示されるように、ページに記述されているメタデータを可能な限り解釈しようとします。その際、schema.org の Article マークアップ(リンク先は英語)がページに実装されていると大変役立ちます。特に、次の属性が含まれていればなお効果的です。

  • headline
  • alternativeHeadline
  • image(注: この画像はクロールやインデックス登録に対応できる必要があります)
  • description
  • datePublished
  • articleBody

ページ指定と正規化

複数のページで構成されるコンテンツの場合、rel=next や rel=prev を使用した適切なページ指定マークアップを行うことにより、Googleアルゴリズムはそれらの記事の範囲を正しく特定できるようになります。

(中略)

個別のページまたは「すべて表示」ページのいずれかにリンクする rel=canonical を設定します(複数のページで構成されるコンテンツの 1 ページ目にはリンクさせないでください)。詳しくは、ページ指定と正規化をご覧ください。

ロゴ

ウェブマスターは、ウェブサイトに使用するロゴに関するヒントを次の 2 通りの方法で Google に提供することができます

  • Google+ ページとウェブサイトへのリンクを作成する。デフォルト画像として公式のロゴまたはアイコンを選択します。
  • Organization マークアップを使用して組織のロゴを指定する。

参考記事:Official Google Webmaster Central Blog: Using schema.org markup for organization logos

アフィリエイト プログラム

参考記事:Affiliate programs - Search Console Help

内容の薄いアフィリエイト サイトの例

商品アフィリエイト リンクを含むページで、商品の説明とレビューを元の販売者から直接コピーし、独自のコンテンツや付加価値を加えることなくそのまま掲載しているもの。

良質なアフィリエイト サイト

アフィリエイト プログラムに参加しているサイトが必ずしもすべて内容の薄いアフィリエイト サイトであるわけではありません。たとえば、独自の商品レビュー、評価、商品比較などを行って付加価値を提供している良質なアフィリエイト サイトもあります。アフィリエイト プログラムに参加しているサイトを差別化してランキングを高めるために次のような方法が役立ちます。

差別化の方法

  • サイトのごく一部にのみアフィリエイト プログラムのコンテンツを掲載する。
  • ユーザーが元の販売者のサイトに直接アクセスせずにこのサイトにアクセスしようとする理由を考える。元の販売者が提供しているコンテンツを転載するだけでなく実質的な付加価値を提供するサイトにします。
  • アフィリエイト プログラムを選択する際、サイトの対象ユーザーに適した商品のカテゴリを選択する。サイトのコンテンツに合ったアフィリエイト プログラムを選択することで、サイトの付加価値が高まり、Google の検索結果でのランキングが高くなり、アフィリエイト プログラムから収益を得られる可能性が高くなります。たとえば、アルプスのハイキングに関するサイトには、事務用品ではなくハイキング関連書籍の販売業者との提携が適しています。
  • ウェブサイトでユーザーのコミュニティを形成する。熱心な読者の獲得に役立ち、サイトのテーマに関する情報が集まる場を作ることができます。たとえば、ディスカッション フォーラム、ユーザー レビュー、ブログなどでユーザーに独自のコンテンツと付加価値を提供できます。
  • 常に最新で関連性の高いコンテンツを提供する。テーマに一貫性のある最新の情報を提供すると、コンテンツを Googlebot がクロールし、ユーザーがクリックする可能性が高まります。

Railsで多対多の関連をチェックボックスで設定

Railsで多対多の関連をチェックボックスで設定する時のメモ

Model

$ rails g model post name:string
$ rails g model tag name:string
$ rails g model post_tag post:references tag:references

post.rb

class Post < ActiveRecord::Base
  has_many :post_tags
  has_many :tags, through: :post_tags
end

tag.rb

class Tag < ActiveRecord::Base
  has_many :post_tags
  has_many :posts, through: :post_tags
end

post_tag.rb

class PostTag < ActiveRecord::Base
  belongs_to :post
  belongs_to :tag
end

View

= collection_check_boxes(:post, :tag_ids, Tag.all, :id, :name) do |t|
  = t.label(class: "checkbox-inline") { t.check_box + t.text }

Controller

def post_params
  params.require(:post).permit(:name, {:tag_ids => []})
end

参考

RailsのテンプレートをBootstrapが適用されたslimファイルで生成する

RailsのテンプレートをBootstrapが適用されたslimファイルで生成する時のメモ。

RailsのテンプレートをBootstrapが適用されたslimファイルで生成

gem 'slim-rails'
gem 'html2slim'
gem 'bootstrap-sass'
gem 'bootstrap-generators'
$ bundle install
$ rails generate bootstrap:install -f

既存のファイルがある場合

erbファイルをslimファイルに変換

$ for i in app/views/**/*.erb; do erb2slim $i ${i%erb}slim && rm $i; done

参考